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High-order finite elements are a good foundation for next-
generation scalable multi-physics simulations

Large-scale parallel multi-physics simulations
+ radiation diffusion

+ electromagnetic diffusion

« compressible hydrodynamics

Finite elements naturally connect different physics

nodes 8th order Lagrangian hydro simulation
High-order High-order High-order High-order of a shock triple-point interaction
kinematics MHD rad. diff. thermodynamics

High-order finite elements on high-order meshes
* increased accuracy for smooth problems
 sub-element modeling for problems with shocks

« bridge unstructured/structured, sparse/dense

« FLOPs/bytes increase with the order

Need new (interesting!) R&D for full benefits

« meshing, discretizations, solvers, AMR, UQ, visualization, ...

High-order H(curl) AMR in geophysics
modeling of subsurface electric conductivity



Our scalable high-order finite element simulation pipeline

hypre: Scalable linear MFEM: Modular finite BLAST: High-order ALE shock
solvers library element methods library hydrodynamics research code

High performance
preconditioners

www.lInl.gov/casc/hypre mfem.org www.lInl.gov/casc/blast

= FE research and fast application prototyping - MFEM
= High-order hydrodynamics and multi-physics — BLAST

= Scalable solvers for radiation, electromagnetic diffusion — hypre



Compressible shock hydrodynamics

= Compressible Hydrodynamics describes
flows where the density changes in

response to pressure.

= This is the case in gases, or liquids with large
energies and/or pressure changes.

= Many applications at LLNL/DOE, e.g.

implosion in the National Ignition Facility.

Laser-driven high energy-density
plasma computation

= Mathematical challenges:
« shock waves

+ handling of discontinuous solutions

* moving meshes
« multi-material flow

» coupling with other physics

Inertial Confinement Fusion
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ALE Discretizations for Large-Scale Hydrodynamic
Simulations

The Arbitrary Lagrangian-Eulerian (ALE) framework is the
foundation of many large-scale simulation codes.

ALE Equations ~
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. Triple-point shock interaction problem
Mass Conservation:

d
Energy Conservation: p (d—: +c Ve) =0:VV
Equation of State: p = EOS(e, p)
d%
Equation of Motion: d_: +Zc=v

Typical ALE approaches for shock hydro consist of:
» Lagrangian phase
- Moving computational mesh

e Advection phase
- Mesh optimization

- Conservative field remap
- Monotonicity

e Multi-material element treatment

High-order Lagrangian simulation



The BLAST code discretizes the ALE fields and
geometry with high-order finite elements

BLAST — novel simulation code combining:

* High-order finite elements +
* High-order meshes + .:.:.:.:.: — ;;;;t

* ALE hydrodynamics

Lagrange Phase ok

* Solve hydro PDEs on moving curvilinear mesh
e Continuous HO kinematics
* Discontinuous HO materials and

thermodynamics
e HO extension of classical SGH

kine.matic m = | thermodynamic
Remap Phase ® o ¢0xis(@) basis (Q1)
O

 HO mesh optimization

* Field remap by solving advection in pseudo-time
* Ensure conservation and HO monotonicity




We models shock hydrodynamics using high-order
FEM in both Lagrangian and Remap phases

Lagrangian phase
+* mesh motion
determined by

physical velocity

Remap phase

¢ artificial mesh
motion, defining
the mesh velocity

K/

*» time t evolution

Y

¥ “pseudo-time” T
evolution

+* Galerkin FEM

Lagrangian phase (¢ = 6) r éé% Advection phase (¢ = —n)
dv -

. . d(pv . .
Momentum Conservation: vl V.o ( GOl — Momentum Conservation: (p¥) = Vm - V(pV)

Mass Conservation: Frie —pV -V < DGFEM Mass Conservation: i Vm - Vp
_— de _ oo : d(pe) _
Energy Conservation: P 7 Vv Energy Conservation: = m V(pe)
T
dx -
Equation of Motion: ==y Mesh velocity: Vi = dx
i ) Bernstein basis dr |




We represent different materials as high-order
material indicator functions

» Mixed cells appear after remap or due to shaping

v different material properties, but one velocity

 We track materials with material indicator functions:

Vi

e ™ 7 ;nk =1, 0<mg(x,t) <1.

v Finite element functions or sub-cell point values

v High-order generalization of “volume fractions”

Volume change is controlled by the volumetric strain
de
2 =1

v Lagrangian indicators: 5k = Tk

v Closure models: sub-zonal strain evolution

material 1

Indicators for a two-material problem in 1D

Simple material indicator function and its
monotone projection with a Bernstein basis



Lagrange phase solves a system of conservation
laws in physical time using Galerkin finite elements

Continuous Lagrange Semi-discrete Lagrange

Material dny : dn HO cl
A . . . ! k closure
indicators —dt = (ﬁk nk)v v | ? = by, model
Material mass _ 0.0 E
/ NkPk = / NPk | Pkl J| = nppplJ°| Strong mass
\% Vo : conservation
. dek E dek
Material NPk —— = MOk : VU ! M,— = Fg Y Dense solve
energy dt | dt
dv l dv
Momentum pa =V.o i MVE =—-F-1 Sparse solve
Position d_x — v i d_X — v Mesh update
dt ! dt
Total density Total internal energy Total stress E Zonal thermodynamic mass matrix Generalized corner forces
p= Zﬁkﬂkz pe = Z%Pkek o= anak ! (Me,kz)ij — / NkPRPiDj F = ZFk
k k k ! Q k
Material mass Material internal energy Material volume : Global kinematic mass matrix Material corner forces

My, :/nkpk IE}, Z/Uk:pkek Vi :/nk (My )y :/ijwi (Fx)ij Z/(mc(fk!vwi)%’
Q Q Q Q Q

* V. Dobrev, Tz. Kolev, R. Rieben, “High-order curvilinear finite elements for Lagrangian hydrodynamics”, SISC, 2012



We have developed a high-order “pseudo-time” DG
advection algorithm for conservative and accurate remap

Advection-based remap

*  Continuous transition in pseudo-time from the old to the
new, optimized, mesh

*  Preserve (discontinuous) fields in physical space while
the mesh is moving
dp dx

dp
E—Oﬁg—u-Vp U=

Accuracy & Conservation
» Discontinuous Galerkin (DG) discretization, upwind flux

0 3" order DG remap on a 4" order
E/Q pY = _Z /T pu - Vip + Z /f{pu -nt Y] mesh deforming in pseudo-time
T f

* Remap by ODE integration (swept volumes)
*  Order independent, no interface reconstruction

Monotonicity
* Preserve bounds, no spurious oscillations

+  Enforced at degrees of freedom Bernstein HO basis: Gauss-Lobatto HO basis
Different approaches: LSD, FCT, and OBR HERRIET AR Vg, Uy, Uz




Remap phase solves a system of advection equations in
pseudo time using Discontinuous Galerkin finite elements

Continuous Remap Semi-discrete Remap

Material dny i dny
indicators — =u-V k ! — =K
dr g : dr KL
Material mass d(nkpkz) | d("?P)k: A bly &
— U - ! M — K ssembly
dT v(nkpk) ! dr (np) & dense solve
. d(Mkprer d(npe);
Material (77 P ) = U - V(lepkek) ! M (np ) = K(npe)k
energy dr ! dr
d(pv) : dv
Momentum =Uu- V(p’v) | M,— =K,v Assembly &
dr ! dr sparse solve
Remesh d_l’ —u E d_X - 1u Remesh update
velocity dr : dr
Zonal thermodynamic mass matrix Global kinematic mass matrix
M,;; = / ;P (My)i; = / PW;jW;
Q Q
Thermodynamic advection matrix Kinematic advection matrix

Kij = XZ:/ZU'V%@ _Zf:/f(u‘n)ﬂ¢jﬂ(¢i)d (Kv)ij = /qu'v’wj Lw;

* R. Anderson, V. Dobrev, Tz. Kolev, R. Rieben, “Monotonicity in high-order curvilinear finite element arbitrary
Lagrangian—Eulerian remap”, JINMF, 2015



High-order FE on high-order meshes lead to more
robust and reliable Lagrangian simulations

High-order Low-order SGH
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High-order methods perform well on a variety of
challenging multi-material ALE problems

4-material axisymmetric high-velocity plate/rod impact 2-material RT instability



Lagrangian simulations on coarse meshes with Q12-
Q11 finite elements




Lagrangian simulations on coarse meshes with Q12-
Q11 finite elements

Shock triple-point interaction (4 elements) Smooth RT instability (2 elements)



Semi-discrete Lagrangian phase and its finite
element numerical kernels

Lagrangian algorithm in BLAST Generalized force matrix

dv

- = — . F," = (O V_’,' /
Mvdt S ! /mr)( “i) 0 J
Meie_ —FT .y 18x4 for Q2-Q1,

dt 32x9 for Q3-0Q2,... E =
dx . =
— =V
dt

Kernel 1: Assembly/evaluation of the zonal corner forces:
Fi= [ (0 )6 =3 aws(@) 97 (G980 (GGl
z(t k

Kernel 2: Inversion of the (global) kinematic mass matrix:

(ML) = [ oy = 3 awpliiis i) - 13- (3)
z k



Kernel 1: Partial assembly and evaluation
of bilinear forms

A=P'GT"BT"DBGP

The finite element assembly/evaluation of general bilinear forms (matrices) can be
decomposed into parallel, mesh topology, FE basis, and components:

Storage options:

1. A,,A:standard global matrices (e.g. in CSR/ParCSR format)
2. A.:local stiffness matrices (e.g. for high-order methods)

3. /) :quadrature point data only (independent of basis order)
4. none : action-only evaluation (e.g. for explicit methods)
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Large-scale strong scalability with partial assembly

Full assembly

BLAST Strong Scaling on Vulcan

2D Lagrangian Sedov Problem on 131,072 zones 10000
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BLAST Strong Scaling on Vulcan

Quadrature-point storage only (D)

2D Lagrangian Sedov Problem on 131,072 zones

--SGH Code
~600 dofs/zone ~-Q2 FEM (Inline)
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Number of cores

p-refinement on 512x256 mesh, strong scaling down to 1 elem/core, high-order

results in low order run time at 32K cores
Newer result have much earlier cross-over point

Quadrature-point storage in mass/corner force matrices, Jacobi preconditioning




Kernel 2: Stationary linear iteration (SLI)
approximation

Lumped mass matrix in the Gauss-Lobatto

basis is close to the full mass matrix.

A sequence of improving approximations:

« By = M;!
e By =2M; ' — M;'MM;'

e[ —B,M=(I—M;'M)"

Properties:
« mass conserving: 1'B,p = 1*Mp
* limited spread of information

L, norm of the error

. s _ —1
« converge to exact inverse: im B, = M

n—oo

* equivalent to fixed numbers of stationary
linear iterations: x,, = B, b is the same as

Tkl = Tk —I—Mgl(b— Mﬂ?k)

CIZ():O,

for k=1,...,n.
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Recent strong scalability on a BG/Q node with SLI

Lagrangian Sedov problem with fixed number of DOFs (different meshes)

“SGH
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BLAST has good strong scaling properties




High-order finite element kernels are well-suited for
GPU acceleration

BLAST results on a single node of SNL's Shannon testbed
3D Q2Q1 Sedov blast on 32x32x32 mesh, timed 300 corner force calls

2GPUs: Tesla K20X, CPU: Sandy bridge E5-2670@2.6GHz, optimized Intel compiler
2000

J—— i Total simulation time

1800 Rl 2

1 L - i Corner force kernel
1600 |- 3 H H

N~
1400 - CPU CPU CPU CPU CPU CPU PU CPU CPU CPU CPU CPU
1200 <

W 14x faster with MPI | 2 54x faster with MPI+CUDA
1000 3 0
~

800

600

400

200

& & & & 3 > > > K K
< < < N N & & & & &
Y v A4 % o ~N ~ N N ~N

* 6 CUDA kernels, Hyper-Q, CPU-GPU transfer of vectors

*T. Dong, V. Dobrev, Tz. Kolev, R. Rieben, S. Tomov, J. Dongarra, “A step towards energy efficient computing:
redesigning a hydrodynamic application on CPU-GPU”, IEEE PDPS, 2014



General adaptive mesh refinement on high-order

curved meshes

Non-conforming refinement for quad/hex
meshes is actively developed in MFEM.

— Implemented by generalizing G, P

— h-refinement with fixed p

Powerful and general:

— any (high-order) finite element space on
any (high-order) curved mesh

— arbitrary order hanging nodes
— anisotropic refinement
— serial and parallel (limited)

— independent of the physics (easy to
incorporate in BLAST, etc.)

Top: Adaptation to a shock-like solution.

Bottom: relative AMR error for the 2D problem
improves significantly with the order
(approaching full h-p refinement)

Approximation error (H1 seminorm)
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0.0001

1e-05

1e-06

2D Shock-like Problem AMR Benchmark (Quad Mesh, Anisotropic Refinements)
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Static parallel NMR, Lagrangian Sedov problem

-conforming ref.

random non

4096 cores,

8 cores, random non-conforming ref.

Shock propagates through non-conforming zones without imprinting



Static parallel AMR, Lagrangian shock triple-point

E
E

\

Anisotropic AMR aiming for “square” elements at t=5.0



Simple anisotropic AMR for high-order H1 and
H(curl) problems

* ZZfor (high-order) H1 problems * H(curl) EM problems can really benefit
V- (pVu) = f from high-order AMR
F = pVu Nk = |F — Favgll L, () *  MFEM supports it “out of the box”
*  Anisotropic version * Working on extending the anisotropic
VK)zy.: = |[(F = Favg) - Jk€ay 2| 1o (1) ZZ estimator to H(curl)

« Simple and close to using exact error *  Preliminary magnetostatic results:

3D Shock-like Problem ZZ Estimator Test (Hex Mesh, Aniso Refinements)

T T T T T

; exact error calculation -------

10 Wi order 1 ZZ estimate ——
- 5 ‘ i order 2 ZZ estimate —=— 1
order 4 ZZ estimate —e— ]

Approximation error (H1 seminorm)

0.01 |

0 20 40 60 80 100 120 140 160
Cube root of the number of unknowns Magnetic field magnitude in an angled pipe problem

* mfem-3.1, Jan 2016



H(curl) diffusion is difficult to solve

EM diffusion modeled by second order definite Maxwell
VxaVxE+PBE=f +— Apr=05>

Challenging due to large “near-nullspace”: V x (Vpy) = 0

Hiptmair-Xu decomposition for Nedelec elements I1;, Gh
up, = vp + Gppp + Hpzp A é ﬁ

The Auxiliary-space Maxwell Solver (AMS) achieves scalability through
reduction to the nodal subspaces

By, = Ry, + G, B, .G}, + 1, B, 1, 1T},

Val o o
Point smoother for AMG solver for AMG solver for
Ay G AnGh T} A, 11,

* Tz. Kolev, P. Vassilevski, “Parallel auxiliary space AMG for H(curl) problems”, JCM, 2009



AMS has been highly scalable for low-order
discretizations on conforming meshes

AMS implementation in hypre requires minimal additional fine-grid information, that

MFEM can generate and pass automatically.

1/Y 1
Vi /y

compression
generator

 Significantly outperforms previous
solvers =P up to 25x speedup

Seconds

140
120 gt e e e e >
=== problem
100 —
= = setup
80 i 50lVE
60
40 —.M‘
20
0
0 50000 100000

Number of Processors

Scaled up to 125K cores (12B unknowns)

Solves previously intractable problems



We recently applied AMS to high-order non-
conforming AMR geo-electromagnetics

In the high-order case, G and 11, are more complicated and depend on the

choice of H1 and H(curl) bases
* MFEM has general objects to evaluate these in parallel

Discrete gradient in the non-conforming case is defined by commutativity:

Se(T) —=4 v (T)
Gen = RvGpenPs where PSHRS PVﬂRV
Spe(T) 22y (T)

Magnetotelluric application V x aV x E + i8E (with A. Grayver, ETH)

Refinement step # DoFs | Nier Ngg

0 647 544 22 3

6 786 436 22 3

12 2 044 156 23 3

18 9 291 488 24 4
2" order AMR for a Kronotsky volcano model with ~12K-170K cells AMS iterations ( NSG ) for 1e-2 tolerance

* A. Grayver, Tz. Kolev, “Large-scale 3D geo-electromagnetic modeling using parallel adaptive high-order finite element
method”, Geophysics, 2015



We are currently working on high-order radiation-
diffusion and its compatible coupling with the hydro

* Multi-material single group equations (Grey diffusion)

de
Material energy nkpkd—: = NKok : VU + anUp,k(E — ClT]j)
dE -
Radiation energy ’r + V- F = _CZ Mop (B —aly) — EV -v
1 1 ’
Radiation flux §VE = zk: Nk Or k

= C on 0f

« De Rham complex: H(div) fluxes match L2 hydro thermodynamics

H (grad) L,(H(curl):v—x> H(div) 5| Ly
“nodes” l\ “edges” I “faces” “zones”

HO kinematics HO MHD HO rad-diff. HO thermodynamics

* Explicit-implicit coupling allows for generic time integration



We are currently working on high-order radiation-
diffusion and its compatible coupling with the hydro

* Newton step for Backward Euler slopes:

k" =K"= [ON (K" )] TN (KT

e Jacobian matrix

M, + 0H), —cAtM,, 0 Ke
INB = _om, .. M + cAtS, M, D kg
0 . IAtDT <Mr 4 3By ||

* Energies are discontinuous so their blocks can be eliminated locally
e Jacobian solve reduces to a global system for the fluxes F

* We take advantage of the scalable algebraic H(div) solver from ﬁ%@?-: ADS

igh performance
Aareconditioners

* Tz. Kolev, P. Vassilevski, “Parallel auxiliary space AMG for H(div) problems”, SISC, 2012




Initial coupled high-order radiation-hydrodynamics in
BLAST: convergence, “crooked pipe”

—71t o
Tinat(r,t) = To (1 _ € cos(wr)) j
e—Tt :
E(r,t) = aT?, (1 + 5 cos(wr)) ’
e—Tt 4
de(r, t) = T() (1 -|— 5 > 6

"0 005 01 oI5 02 025 03 035 04 045

Brunner’s smooth nonlinear Equation terms of
manufactured solution similar magnitudes
— Q201 (hin) | _ 4euo _
w02l — Q@3Q2(thin) |~ T A
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i=] : :
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200 F AAAAAAA R ................................
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High-order convergence in thick & thin limits!

Crooked pipe, Q2-Q1 simulation



XBraid: Parallel Time Integration of High-Order Finite
Element Advection-Diffusion

= 2D advection u: = b(x) - Vu + yAu
« Periodic mesh 11

« Stability determined by convection
(convection dominated)

« Diffusion term 0.001

« Modified MFEM example targeting
DG remap in BLAST

1 0.7625

i0.425

0.0875

= Sequential Time Stepping

« Sharp profile is transported
over 1100 time steps

- 3" order explicit method

-0.25

« 3-level XBraid hierarchy

14



XBraid: Parallel Time Integration of High-Order Finite
Element Advection-Diffusion

= 2D advection u; = b(x) - Vu + vAu

- Stability determined by convection Iteration 0
(convection dominated)

« Diffusion term 0.001
= Parallel-in-time solution

11

0.7625

« Sharp profile is transported
over 1100 time steps

0.425

« 3" order explicit method

0.0875

« 3-level XBraid hierarchy

NS0

PARALLEL MULTIGRID IN TIME

-0.25

www.lInl.gov/casc/xbraid Initial guess t=0

* R. Falgout, S. Friedhoff, Tz. Kolev, S. MacLachlan, J. Schroder “Parallel time integration with multigrid”, SISC, 2014



XBraid: Parallel Time Integration of High-Order Finite
Element Advection-Diffusion

= 2D advection u; = b(x) - Vu + vAu

- Stability determined by convection Iteration 5
(convection dominated)

« Diffusion term 0.001
= Parallel-in-time solution

11

1 0.7625

10.425

0.0875

« Sharp profile is transported
over 1100 time steps

- 3" order explicit method
« 3-level XBraid hierarchy

NS0

PARALLEL MULTIGRID IN TIME

-0.25

www.lInl.gov/casc/xbraid

* R. Falgout, S. Friedhoff, Tz. Kolev, S. MacLachlan, J. Schroder “Parallel time integration with multigrid”, SISC, 2014



XBraid: Parallel Time Integration of High-Order Finite
Element Advection-Diffusion

= 2D advection u; = b(x) - Vu + vAu

- Stability determined by convection Iteration 10
(convection dominated)

« Diffusion term 0.001
= Parallel-in-time solution

11

1 0.7625

10.425

0.0875

« Sharp profile is transported
over 1100 time steps

- 3" order explicit method
« 3-level XBraid hierarchy

NS0

PARALLEL MULTIGRID IN TIME

-0.25

www.lInl.gov/casc/xbraid

* R. Falgout, S. Friedhoff, Tz. Kolev, S. MacLachlan, J. Schroder “Parallel time integration with multigrid”, SISC, 2014



XBraid: Parallel Time Integration of High-Order Finite
Element Advection-Diffusion

= 2D advection u; = b(x) - Vu + vAu

- Stability determined by convection Iteration 20
(convection dominated)

« Diffusion term 0.001
= Parallel-in-time solution

« Sharp profile is transported
over 1100 time steps

11

10.7625

10.425

0.0875

- 3" order explicit method
« 3-level XBraid hierarchy
= Future Work:

« improve convergence (relaxation,
coarse-grid equations)

-0.25

« pure advection

* R. Falgout, S. Friedhoff, Tz. Kolev, S. MacLachlan, J. Schroder “Parallel time integration with multigrid”, SISC, 2014



We are developing general tools for HO mesh optimization
and high-quality interpolation between meshes

We target high-order curved elements + unstructured meshes + moving meshes

High-order mesh relaxation in MFEM (neo- Advection-based interpolation (DG pseudo-
Hookean evolution) time remap in BLAST)



We are developing general tools for accurate and flexible
finite element visualization

Two visualization options for high-order functions on high-order meshes.

GLVis: native MFEM lightweight OpenGL Vislt: general data analysis tool, MFEM
visualization tool support since version 2.9

BLAST computation on 2™
order tet mesh from NETGEN

glvis.org visit.lInl.gov



NURBS support in MFEM allows for accurate geometry
description with relatively coarse meshes

NURBS meshes generated by the PMESH project at LLNL
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2D mesh with 3 material attributes; the FEM solution of the Laplace equation on a
interface is represented exactly 3D NURBS mesh



High-order closure model essential for problems
with vastly different materials

Total density profile of gas impact test at times t=o0, 2, 4, 6, 8 and 10




Closure model enables high-resolution material
representation without interface reconstruction

1

075

N
]

Material indicator function of the gas impactor at final time

*V. Tomov et al., “Multi-Material closure models for high-order finite element Lagrangian hydrodynamics”, in preparation



Current and future work

High-order finite elements show promise for scalable
multi-physics ALE simulations

Some ongoing research:

improve artificial viscosity, closure model and
monotonicity methods

port and optimize our software stack for upcoming
architectures

extend AMR to parallel DG and load balancing

develop solvers for partially assembled operators

parallelize in time (XBraid project)

Papers and additional details:

people.linl.gov/kolev1

Open-source finite element software:

Q4 Rayleigh-Taylor single-material
ALE on 256 processors



